A Metro Map-Based Curriculum Visualization for Examining Interrelated Curricula

Tamara Nelson-Fromm and Wade Fagen-Ulmschneider

ASEE 2022, CIT Division Technical Session #9

Get the slides: nelsonfromm.com/files/asee2022-slides.pdf

Curricular requirements can be complicated at a large university

Curricular requirements can be complicated

At the time of this project, the University of Illinois had...

- 180+ 3-letter course codes, with 1-100 numbers/courses per code
- 300+ degree programs*

Curricular requirements can be complicated

At the time of this project, the University of Illinois had...

- 180+ 3-letter course codes, with 1-100 numbers/courses per code
- 300+ degree programs*
- 17 degree programs within the Engineering college
- 15 departments within the Engineering college
- Graduation requirements for the College of Engineering
- Graduation requirements for each degree program

^{*} includes joint degree programs

Curricular requirements can be complicated

- Both students and administrators can be overwhelmed by the amount of information and choice
- Even upperclassmen need assistance understanding their path to graduate
- Requirements and available courses continue to change

When students don't understand requirements, they...

Might have to extend their time in a degree program

When students don't understand requirements, they...

- Might have to extend their time in a degree program
- May miss pre-requisite information

When students don't understand requirements, they...

- Might have to extend their time in a degree program
- May miss pre-requisite information
- May take rudimentary courses later in the curriculum

When students don't understand requirements, they...

- Might have to extend their time in a degree program
- May miss pre-requisite information
- May take rudimentary courses later in the curriculum
- Increased burden on advisors

When students don't understand requirements, they...

- Might have to extend their time in a degree program
- May miss pre-requisite information
- May take rudimentary courses later in the curriculum
- Increased burden on advisors

This is a larger issue for students choosing between degree programs

Goal: Help students easily understand commonalities and differences between degree programs

Existing Curriculum Visualizations

- Visualizations that show course pre-requisites/dependencies (Sommaruga & Catenazzi; Kriglstein; Zucker; Gestwicki; Aldrich; Moreno, Bischof & Hoover)
- Visualizations that display recommended course progressions (Zucker; Gestwicki; Auvinen, Paavola & Hartikainen; Nuutinen & Sutinen)
- Visualizations that include course topics and content (Auvinen, Paavola & Hartikainen; Takamatsu; Siirtola)

Computer Science, BS

Overview Degree Requirements

Suggested Sequence

for the degree of Bachelor of Science in Computer Science

Graduation Requirements

Minimum Technical GPA: 2.0

TGPA is required for CS and Math courses. See <u>Technical GPA</u> to clarify requirements.

Minimum Overall GPA: 2.0

Minimum hours required for graduation: 128 hours

General education: Students must complete the <u>Campus General Education</u> requirements including the campus general education language requirement.

Orientation and Professional Development

CS 100	Freshman Orientation (optional course highly recommended may be used to help meet free elective requirements) 1	1
CS 210	Ethical & Professional Issues	2
ENG 100	Engineering Orientation ¹	0
Total Hours		3

Foundational Mathematics and Science

Total Hours chos	sen from the following:	25
MATH 221	Calculus I ²	4
MATH 231	Calculus II	3
MATH 241	Calculus III	4
MATH 415	Applied Linear Algebra	3
PHYS 211	University Physics: Mechanics	4
PHYS 212	University Physics: Elec & Mag	4
Science elective, f	rom departmentally approved list below:	3
AE 202	Aerospace Flight Mechanics	3
ANTH 249	Evolution and Human Disease	3

Computer Science Technical Core

CS 125	Intro to Computer Science	4
CS 126	Software Design Studio	3
CS 173	Discrete Structures	3
CS 225	Data Structures	4
CS 233	Computer Architecture	4
CS 241	System Programming	4
CS 361	Probability & Statistics for Computer Science	3
CS 357	Numerical Methods I	3
CS 374	Introduction to Algorithms & Models of Computation	4
CS 421	Programming Languages & Compilers	3
Total Hours		35

Technical Electives

select eight course	s to be chosen from departmentally approved list below. Students es, at least six of which must be advanced CS courses. Three elected from one area of CS and at least one course should satisfy equirement.	
CS 427	Software Engineering I	
CS 428	Software Engineering II	
CS 429	Software Engineering II, ACP	
CS 445	Computational Photography (Until Spring 2018)	
CS 465	User Interface Design	
CS 467	Social Visualization	
CS 493	Senior Project II, ACP	
CS 494	Senior Project II	S
CS 497	CS Team Project	
<u>CS 498</u>	Special Topics (Virtual Reality (Spring 2018 and later); Mobile Interactive Design (Spring 2019 and later); Internet of Things (F 2019 and later))	The dep

Three of the CS courses must be chosen from a single focus area, from among the areas below:

Suggested Sequence

24

3 or 4 3 or 4

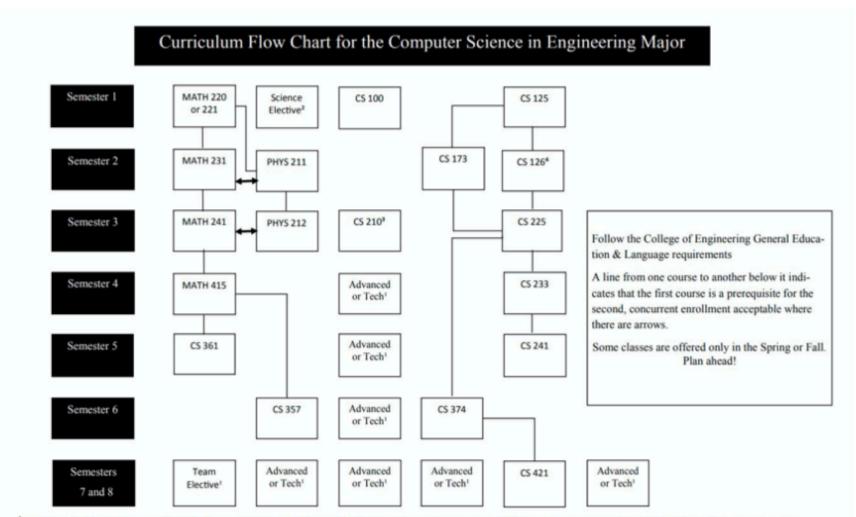
3 or 4

3 or 4 3 or 4

he curriculum sequence below is a suggested sequence, as all Grainger Engineering students work with a epartment academic advisor to achieve their educational goals, specific to their needs and preparation. Dynamic and Static curricular maps, which include prerequisite sequencing, can be found here.

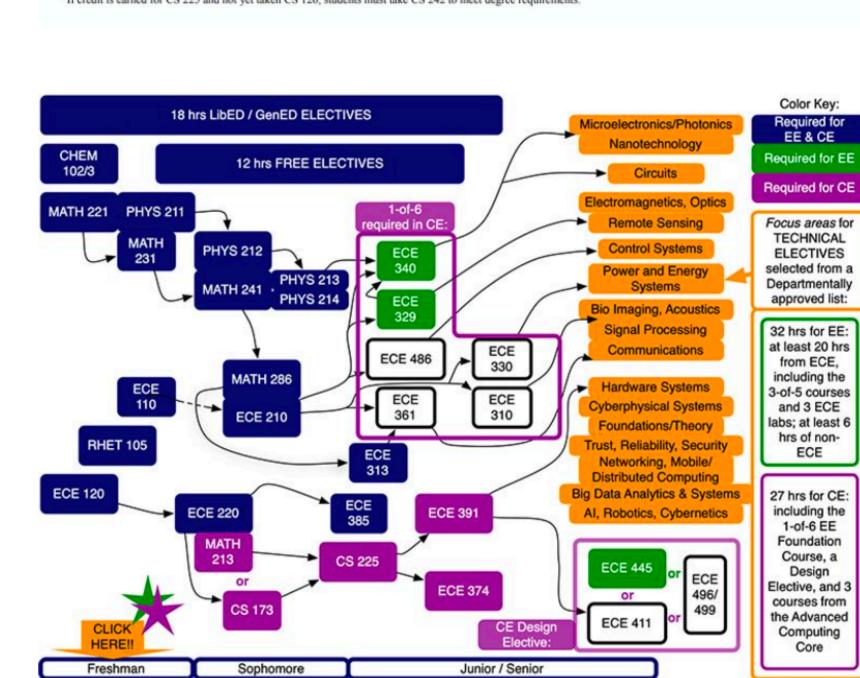
First Year		
First Semester		Hours
CS 100 ¹	Freshman Orientation	1
CS 125	Intro to Computer Science	4
ENG 100	Engineering Orientation	0
MATH 221 ²	Calculus I	4
Science elective ³		3
RHET 105 (or General Education elective) ^{4,5}	Writing and Research	4-3
	Semester Hours	16-15
Second Semester		
<u>CS 126</u>	Software Design Studio	3
CS 173	Discrete Structures	3
MATH 231	Calculus II	3
General education elective (or RHET 10)5) ^{4,5}	3-4
General education elective ⁵		3
	Semester Hours	15-16

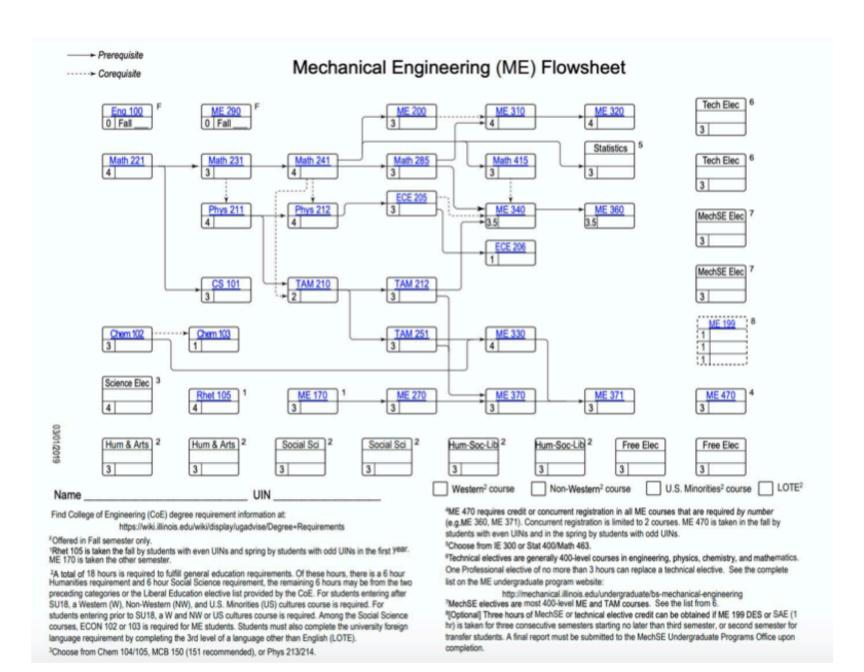
CURRICULUM IN MECHANICAL ENGINEERING

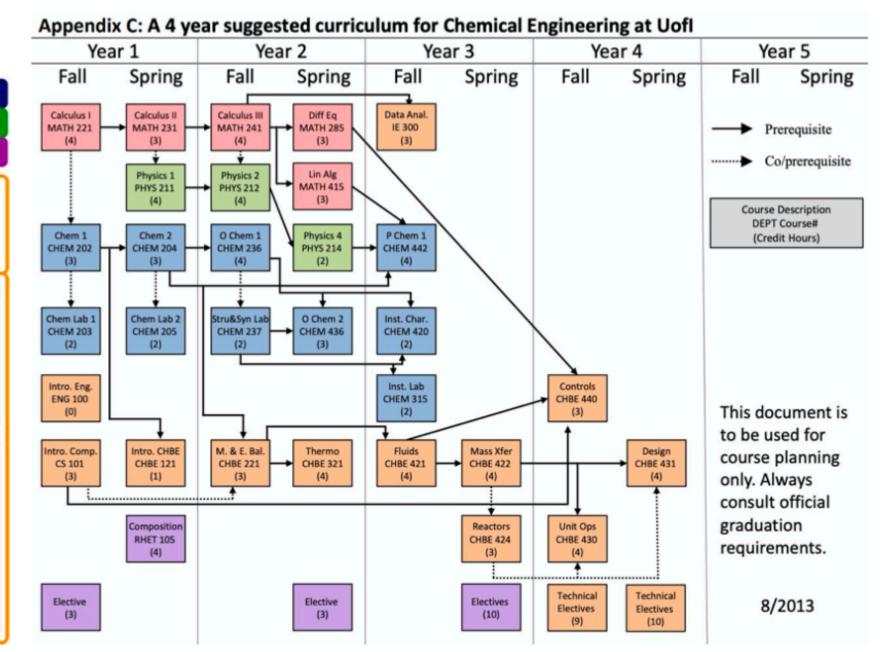

The curriculum requires 128 hours for graduation.

Course Rubric	Course Name	Credit	2.25 GPA9	TGPA ¹⁰
Drientation and Profes	sional Development			
ENG 100	Engineering Orientation	0		
ME 290/390	Seminar	0		
oundational Mathema				
CHEM 102	General Chemistry I	3		
CHEM 103	General Chemistry Lab I	1		
MATH 221	Calculus I	4		
MATH 231	Calculus II	3	×	
MATH 241	Calculus III	4		
MATH 285	Intro Differential Equations	3		
MATH 415	Applied Linear Algebra	3		\boxtimes
PHYS 211	University Physics: Mechanics	4		⋈
PHYS 212	University Physics: Elec & Mag	4		
Mechanical Engineerin		2	57	
CS 101	Intro Computing: Engrg & Sci	3		
ECE 205	Elec & Electronic Circuits	3		⊠
ECE 206	Elec & Electronic Circuits Lab	1		\boxtimes
TAM 210	Introduction to Statics	2		
TAM 212	Introductory Dynamics	3		\boxtimes
TAM 251	Introductory Solid Mechanics	3		
ME 170	Computer-Aided Design	3		
ME 270	Design for Manufacturability	3		
ME 200/300	Thermodynamics	3		⊠
ME 310	Fundamentals of Fluid Dynamics	4		
ME 320	Heat Transfer	4		
ME 330	Engineering Materials	4		\boxtimes
ME 340	Dynamics of Mechanical Systems	3.5		
ME 360	Signal Processing	3.5		
ME 370	Mechanical Design I	3		\boxtimes
ME 371	Mechanical Design II	3		
ME 470	Senior Design Project	3		
Electives and composit	ion	29	r < 200 E	2
RHET 1051	Principles of Composition	4		
Statistics Elective ⁵	IE 300, STAT 400 / MATH 463	3		
Science Elective ³	CHEM 104/105, MCB 150,	4		
	PHYS 213/214			\boxtimes
Technical electives ⁶	Chosen from MechSE approved list	6		\boxtimes
MechSE electives ⁷	TAM and ME courses from MechSE approved list	6		
General education ²	No. Continue = 1	18		
Free electives ¹¹		6		

^{9.} To register for third-year Mechanical Engineering (ME) courses, students are required to have a cumulative grade-point average (GPA) of at least 2.25 in the courses marked with an "X". See http://catalog.illinois.edu/undergraduate/engineer/#TechnicalGPA for


To remain in good academic standing and to graduate from the ME curriculum, a student must have a cumulative GPA of at least
 00 in the courses marked with an "X". See http://catalog.illinois.edu/undergraduate/engineer/#TechnicalGPA for more information.
 Almost any course offered by the University, and most transfer courses, can be used for free electives. Some restrictions apply,


visit https://wiki.illinois.edu/wiki/display/ugadvise/Degree+Requirements#DegreeRequirements-FreeElectives for more information.



A total of eight electives are required: Six course that total 18hrs of CS Technical, one of the six must satisfy the team project requirement and three from one focus area. Two Advanced courses at the 400-level in any field (CS 397 will count towards advanced courses but not Tech electives). See department website for up to date listings.

⁴ If credit is earned for CS 225 and not yet taken CS 126, students must take CS 242 to meet degree requirements.

²One Science elective. Check the CS website or check with a CS advisor for most up to date list.
³ CS 210 may be taken during semester 3 or later. (CS 225 does not need to be completed first)

Our visualization requirements

Student should be able to see...

- 1. Which courses must be taken in order to complete a specific degree program
- 2. Which courses are required by multiple curricula, allowing their completion to fulfill requirements in multiple degree programs
- 3. Which courses are prerequisites or corequisites to a specific course

Why a metro map?

- Displays connections between pieces of information
- Promotes exploration of that connected information
- Users of metro maps have been able to better acquire complicated information

Creating the Visualization

- Data was collected from university sources
 - With web scraping
 - By hand
- A plot of courses in a metro map format was algorithmically generated

More details on data collection and algorithmic generation can be found in the paper AEROSPACE ENGINEERING

AGRICULTURAL & BIOLOGICAL ENGINEERING

BIOENGINEERING

CHEMICAL ENGINEERING

CIVIL ENGINEERING

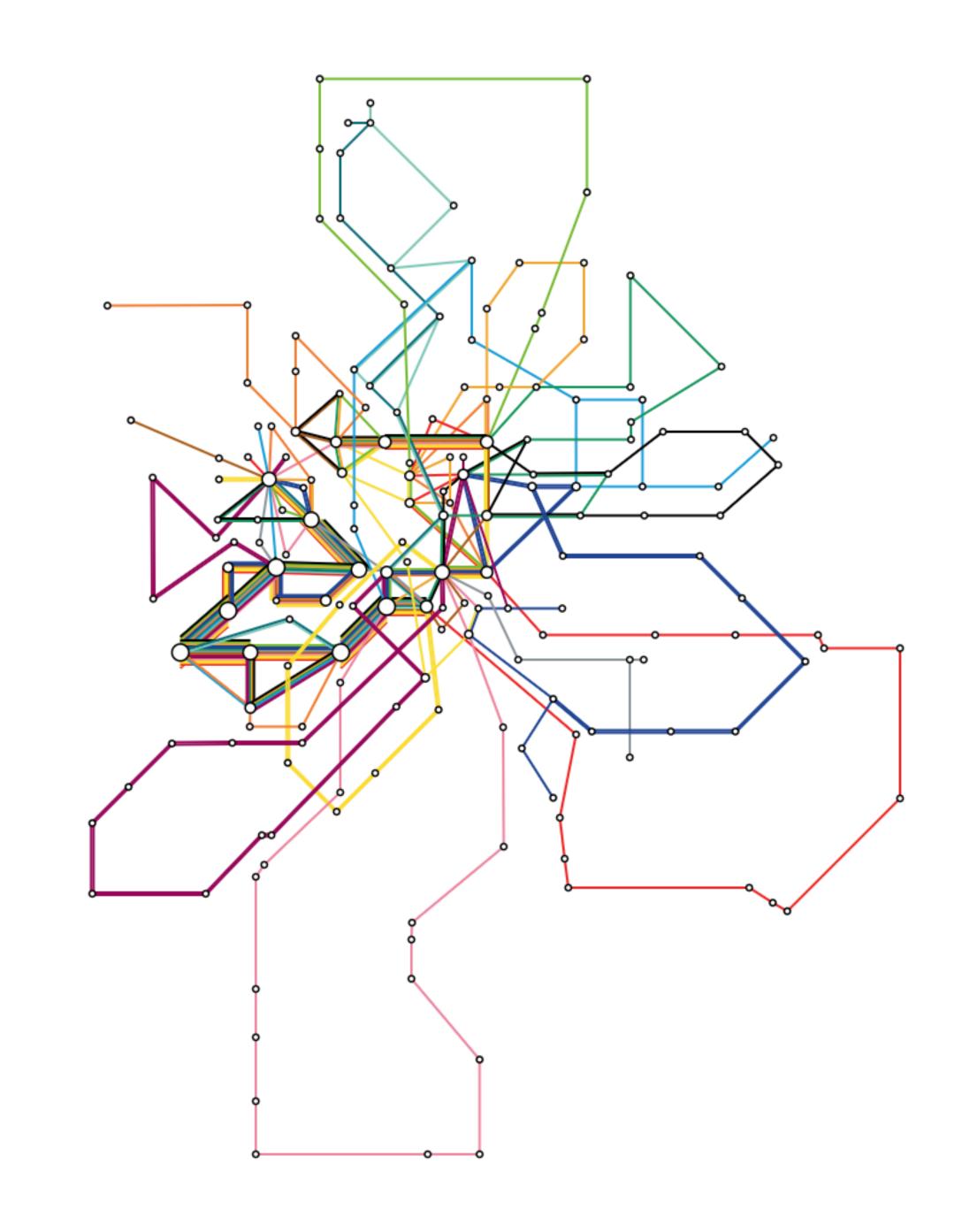
COMPUTER ENGINEERING

COMPUTER SCIENCE

ELECTRICAL ENGINEERING

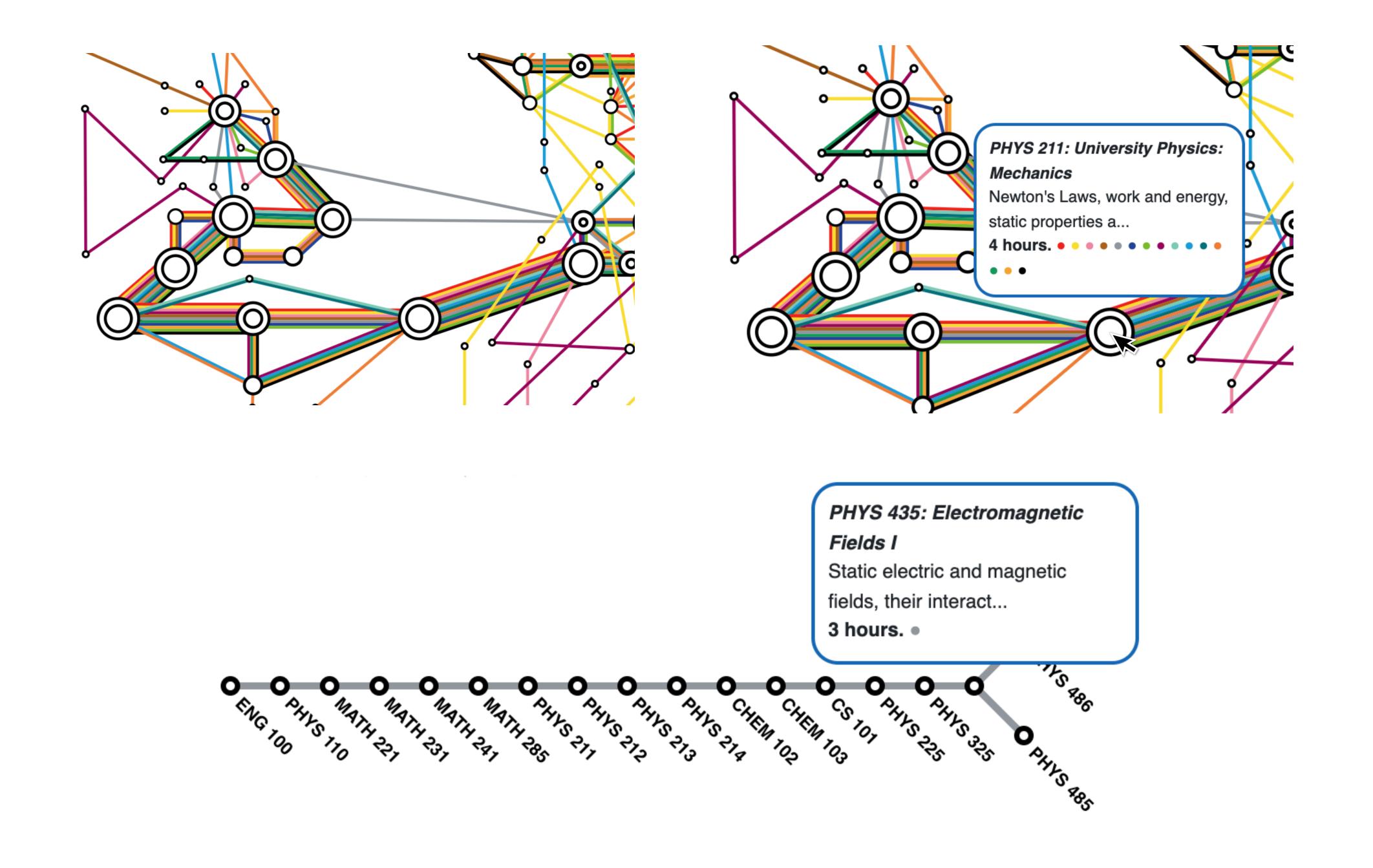
ENGINEERING MECHANICS

ENGINEERING PHYSICS


INDUSTRIAL ENGINEERING

MATERIALS SCIENCE & ENGINEERING

MECHANICAL ENGINEERING


NUCLEAR, PLASMA, & RADIOLOGICAL ENGINEERING

SYSTEMS ENGINEERING

rb.gy/orkaqs

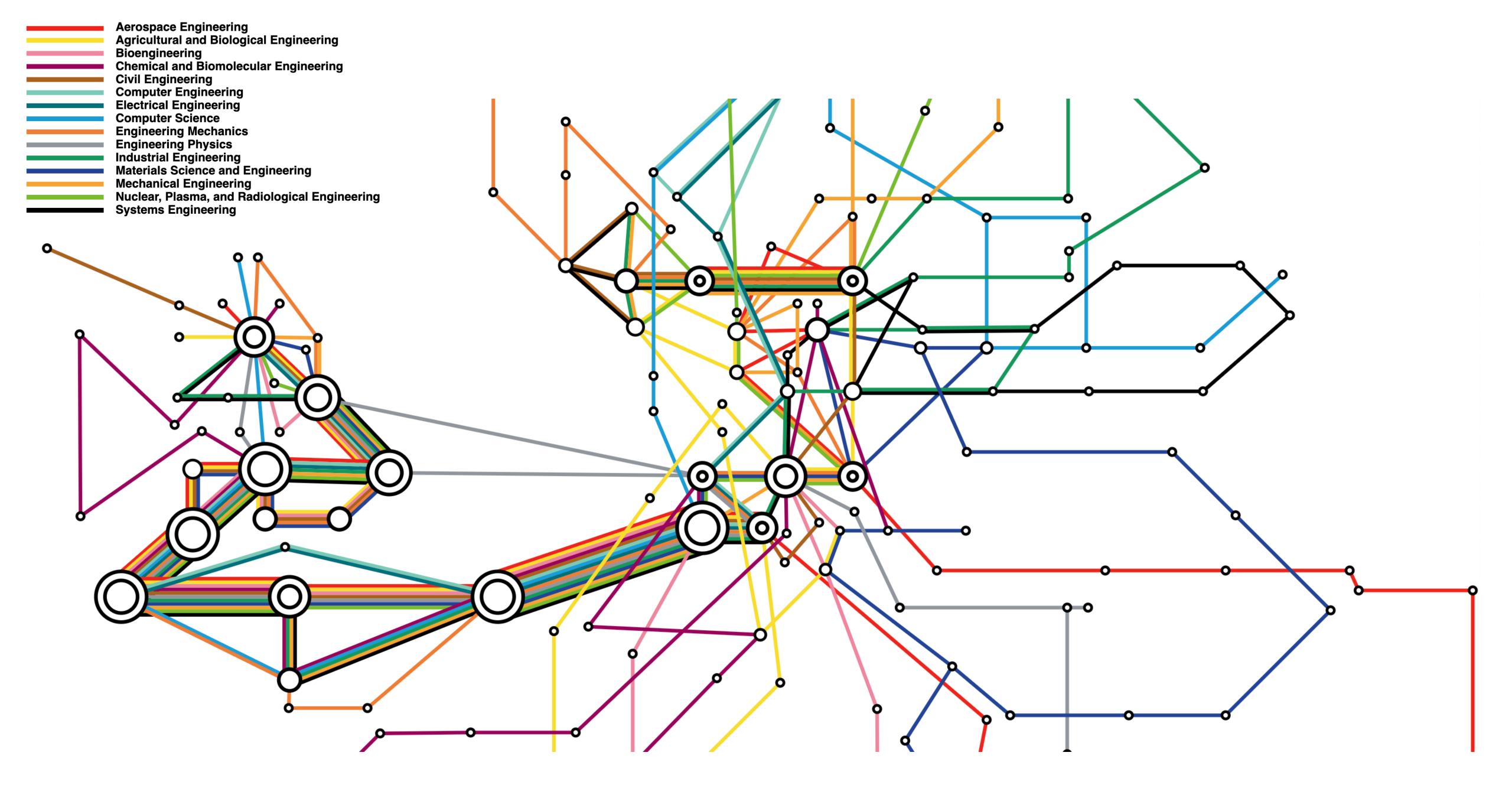
Limitations

- Only one college at one university represented
- Metro map creation is inefficient
 - Curriculum data must be taken by hand
 - Algorithmic plot generation is slow
- Not particularly useful for independent programs

Future Work

- User evaluation of efficacy with students
 - Particularly those in first-year undeclared programs
- Refining the visualization
 - Option to view only a few degree(s)
 - Customizing visualization around courses a student has already completed

Visualization code available (under public license) on GitHub: https://github.com/illinois/eng-metro-map


Some data available on GitHub:

https://github.com/illinois/courses-dataset

https://github.com/illinois/prerequisites-dataset

Interested in collaborating on your own map? Contact me!

tamaranf@umich.edu

